已知椭圆:
,左、右两个焦点分别为
、
,上顶点
,
为正三角形且周长为6.
(1)求椭圆的标准方程及离心率;
(2)为坐标原点,
是直线
上的一个动点,求
的最小值,并求出此时点
的坐标.
设各项均为正数的数列
满足
.
(Ⅰ)若
,求
并猜想
的值(不需证明);
(Ⅱ)记
对n≥2恒成立,求
的值及数列
的通项公式.
如图, 和 的平面上的两点,动点 满足:
(Ⅰ)求点
的轨迹方程;
(Ⅱ)若
,求点
的坐标。
设函数
,曲线
通过点
,且在点
处的切线垂直于
轴.
(Ⅰ)用
分别表示
和
;
(Ⅱ)当
取得最小值时,求函数
的单调区间。
如图,在 中,B= ,AC= , 、 两点分别在 、 上.使 , 。现将 沿 折成直二面角,求:
(Ⅰ)异面直线
与
的距离;
(Ⅱ)二面角
的大小(用反三角函数表示).
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为 ,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数 的分别列与期望 。