现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车相每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
(3)在上述方案中,哪个方案运费最省最少运费为多少元?
“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;
(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
如图,防洪大堤的横断面是梯形,背水坡AB的坡度i=1:,且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求小明到电线杆的距离和髙压电线杆CD的髙度(结果保留根号).
如图,在网格图中建立平面直角坐标系,的顶点坐标为
、
、
.
(1)若将向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的
;
(2)画出绕C1顺时针方向旋转900后得到的
;
(3)与
是中心对称图形,请写出对称中心的坐标:;并计算
的面积:.
(4)在坐标轴上是否存在P点,使得△PAB与△CAB的面积相等,若有,则求出点P的坐标.
先化简,再求值:,其中x=2-
.
如图,已知二次函数的图象过点
.
(1)求二次函数的解析式;
(2)求证:是直角三角形;
(3)若点在第二象限,且是抛物线上的一动点,过点
作
垂直
轴于点
,试探究是否存在以
、
、
为顶点的三角形与
相似?若存在,求出
点的坐标.若不存在,请说明理由.