水果商李老板在高州市收购有香蕉120吨,在海口市收购有香蕉60吨,现要销往北京100吨,沈阳80吨(全部用汽车运输).已知从高州运一吨香蕉到北京和沈阳分别需800元和1000元;从海口运一吨香蕉到北京和沈阳分别需1000元和1300元.
(1)设从海口运往北京x吨,求总运费y(元)关于x(吨)的函数关系式;
(2)李老板计划用17万元开支运费,够用吗?
(3)若每辆车装10吨,且不能浪费车力.李老板要把总运费控制在不超过17.5万元,有多少种调运方案可实现?
(4)请根据前面的要求画出这一函数的图象.
如图,在□ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.
在今年法国网球公开赛中,我国选手李娜在决赛中
成功击败对手夺冠,称为获得法国网球公开赛冠军的亚洲第一人.某班体育委员就本班同学
对该届法国网球公开赛的了解程度进行全面调查统计,收集数据后绘制了两幅不完整的统计
图,如图(1)和图(2).根据图中的信息,解答下列问题:
(1)该班共有________名学生;
(2)在图(1)中,“很了解”所对应的圆心角的度数为_________;
(3)把图(2)中的条形图形补充完整.
已知B(2,n)是正比例函数y=2x图象上的点.
(1)求点B的坐标;
(2)若某个反比例函数图象经过点B,求这个反比例函数的解析式.
如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l::y=x+b保持与四边形OABC的边交于点M、N(M在折线AOC上,N在折线ABC上)设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S为的差(S≥0)。
(1)求∠OAB的大小;
(2)当M、N重合时,求l的解析式;
(3)当b≤0时,问线段AB上是否存在点N使得S=0?若存在,求b的值;若不存在,请说明理由;
(4)求S与b的函数关系式。
已知AB为⊙O直径,以OA为直径作⊙M。过B作⊙M得切线BC,切点为C,交⊙O于E。
(1)在图中过点B作⊙M作另一条切线BD,切点为点D(用尺规作图,保留作图痕迹,不写作法,不用证明);
(2)证明:∠EAC=∠OCB;
(3)若AB=4,在图2中过O作OP⊥AB交⊙O于P,交⊙M的切线BD于N,求BN的值。