某校设计了一个实验考查方案:考生从道备选题中一次性随机抽取
道题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中
道题的便可通过.已知
道备选题中考生甲有
道题能正确完成,
道题不能完成;考生乙每题正确完成的概率都是
,且每题正确完成与否互不影响.
(1)求甲、乙两考生正确完成题数的概率分布列,并计算其数学期望;
(2)请分析比较甲、乙两考生的实验操作能力.
在△中,角
,
,
的对边分别为
,
,
分,且满足
.
(Ⅰ)求角的大小;
(Ⅱ)若,求△
面积的最大值
(本小题15分)
如图在三棱锥P-ABC中,PA分别在棱
,
(1)求证:BC
(2)当D为PB中点时,求AD与平面PAC所成的角的余弦值;
(3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由。
(本小题15分)
已知函数有极值.
(1)求的取值范围;
(2)若在
处取得极值,且当
时,
恒成立,求
的取值范围.
(本小题14分)
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,
平面VAD
(1)证明:AB;
(2)求面VAD与面VDB所成的二面角的余弦值。
(本小题14分)
已知函数的图像过点
,且在点
处的切线方程为
,
(1)求函数的解析式;
(2)求函数的单调区间。