(1)用小立方块搭成的几何体,主视图和俯视图如下图,问搭成这样的几何体最多要 小立方块,最少要 小立方块.
(2)世园会期间,西安某学校组织教师和学生参观世园会,每位教师的车费为m元,每位学生的车费为n元,学生每满100人可优惠2人的车费,如果该校七年级有教师20人,学生612人,则需要付给汽车公司的总费用为_______ 元.
如图:已知A(-4,n)、B(2,-4)是一次函数y1=kx+b的图象与反比例函数y2=的图象
的两个交点.
(1)求反比例函数和一次函数的解折式.
(2)求直线AB与x轴的交点C的坐标及△AOB的面积.
(3)求不等式y1<y2的解集(请直接写出答案).
如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?
如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求证:AE是⊙O的切线
(2)当BC=4时,求劣弧AC的长
如图,已知,
是一次函数
的图象和反比例函数
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求△的面积;