已知椭圆:
(
)过点
,其左、右焦点分别为
,且
.
(1)求椭圆的方程;
(2)若是直线
上的两个动点,且
,则以
为直径的圆
是否过定点?请说明理由.
已知函数
(1)若函数在
内没有极值点,求实数a的取值范围;
(2)若a=1时函数有三个互不相同的零点,求实数m的取值范围;
(3)若对任意的,不等式
在
上恒成立,求实数m的取值范围.
已知圆的方程为
, 椭圆
的方程为
(a>b>0),其离心率为
,如果
与
相交于A,B两点,且线段AB恰为圆
的直径.
(1)求直线AB的方程和椭圆的方程;
(2)如果椭圆的左,右焦点分别是
,椭圆上是否存在点P,使得
,如果存在,请求点P的坐标,如果不存在,请说明理由.
如图,在正三棱柱中, 点D为棱AB的中点,BC=1,
.
(1)求证:∥平面
;
(2)求三棱锥的体积.
某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.
(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面2x2列联表,并判断是否有的把握认为“成绩优秀”与教学方式有关.
甲班(A方式) |
乙班(B方式) |
总计 |
|
成绩优秀 |
|||
成绩不优秀 |
|||
总计 |
附:
P(![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
k |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
已知数列满足:
且
.
(1)求的通项公式;
(2)令数列
的前n项和为
,证明:
<1.