已知椭圆:
(
)过点
,其左、右焦点分别为
,且
.
(1)求椭圆的方程;
(2)若是直线
上的两个动点,且
,则以
为直径的圆
是否过定点?请说明理由.
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k0) |
0.10 |
0.05 |
0.010 |
0.005 |
k0 |
2.706 |
3.841 |
6.635 |
7.879 |
附:K2=
已知函数.
(1)解不等式;
(2)若,求证:
解关于不等式
设函数
(1)若a>0,求函数的最小值;
(2)若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f (x)>b恒成立的概率。
两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.