(本小题满分10分)某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:
分组 |
频数 |
[0,0.5) |
4 |
[0.5,1) |
8 |
[1,1.5) |
15 |
[1.5,2) |
22 |
[2,2.5) |
25 |
[2.5,3) |
14 |
[3,3.5) |
6 |
[3.5,4) |
4 |
[4,4.5] |
2 |
合计 |
100 |
(1)根据频率分布直方图估计这组数据的众数与平均数;
(2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?
(本小题满分12分)已知圆和定点
,由圆
外一点
向圆
引切线
,切点为
,且满足
.
(1) 求实数间满足的等量关系;
(2) 求线段长的最小值;
(3) 若以为圆心的圆
与圆
有公共点,试求圆
的半径最小时圆
的方程.
(本小题满分12分)在三棱锥中,
,
,点
在棱
上,且
.
(Ⅰ)试证明:;
(Ⅱ)若,过直线
任作一个平面与直线
相交于点
,得到三棱锥
的一个截面
,求
面积的最小值;
(Ⅲ)若,求二面角
的正弦值.
(本小题满分12分)已知点到直线
的距离相等,求
得值.
(本小题满分12分)在2015年全运会上两名射击运动员甲、乙在比赛中打出如下成绩:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲、乙两人的成绩;并根据茎叶图估计他们的中位数;
(2)已知甲、乙两人成绩的方差分别为与
,分别计算两个样本的平均数
和标准差
,并根据计算结果估计哪位运动员的成绩比较好,哪位运动员的成绩比较稳定.