如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠ABC=∠CAD.
(1)若∠ABC=20°,则∠OCA的度数为 ;
(2)判断直线AD与⊙O的位置关系,并说明理由;
(3)若OD⊥AB,BC=5,AB=8,求⊙O的半径.
因式分解:2m2n-8mn+8n.
计算:(1)(a2)3÷(-a)2;(2)(a+2b)(a+b)-3a(a+b).
如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.
(1)对角线AC的长是,菱形ABCD的面积是;
(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由;
(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由,若变化,请探究OE、OF之间的数量关系,并说明理由.
如图,已知反比例函数(
)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥
轴,AC=1(点C位于点A的下方),过点C作CD∥
轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.
(1)求该反比例函数的解析式;
(2)求△OCD的周长;
(3)若BE=AC,求CE的长.
如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,使EH=FH,连接BE,CF.
(1)求证:△BEH≌△CFH.
(2)当BH与EH满足什么关系时,四边形BFCE是矩形?
请说明理由.