已知函数,且在和处取得极值.(1)求函数的解析式.(2)设函数,是否存在实数,使得曲线与轴有两个交点,若存在,求出的值;若不存在,请说明理由.
已知向量,且x∈[0,],求 (1); (2)若的最小值是,求实数的值。
已知函数. (1)判断函数的奇偶性; (2)判断函数在上的单调性,并给出证明; (3)当时,函数的值域是,求实数与的值;
已知函数其中, (I)若求的值; (Ⅱ)在(I)的条件下,若函数的图像的相邻两条对称轴之间的距离等于,求函数的解析式;并求最小正实数,使得函数的图像象左平移个单位所对应的函数是偶函数。
已知=,=,=,设是直线上一点,是坐标原点 (1)求使取最小值时的; (2)对(1)中的点,求的余弦值。
已知函数()的最小正周期为. (1)求的值; (2)求函数在区间上的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号