已知函数,且在和处取得极值.(1)求函数的解析式.(2)设函数,是否存在实数,使得曲线与轴有两个交点,若存在,求出的值;若不存在,请说明理由.
已知函数的最大值为. (1)设,求的取值范围; (2)求.
已知函数是定义在(–1,1)上的奇函数,且. (1)求函数f(x)的解析式; (2)判断函数f(x)在(–1,1)上的单调性并用定义证明; (3)解关于x的不等式
(12分)已知函数满足. (1)设,求在的上的值域; (2)设,在上是单调函数,求的取值范围.
(13分)关于的不等式. (1)当时,求不等式的解集; (2)当时,解不等式.
设,若. (1)求A; (2)求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号