如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.
(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当△ECA为直角三角形时,求t的值.
已知:如图,P是⊙O直径AB延长线上一点,过P的直线交⊙O于C、D两点,弦DF⊥AB于点H,CF交AB于点E。
⑴ 求证:PC·PD=PO·PE;
⑵ 若DE⊥CF,∠P=150,⊙O的半径为2,求弦CF的长
已知:如图,点A(m,3)与点B(n,2)关于直线y = x对称,且都在反比例函数的图象上,点D的坐标为(0,-2)。
(1)求反比例函数的解析式;
(2)若过B、D的直线与x轴交于点C,求sin∠DCO的值
某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个。
(1)假设销售单价提高x元,那么销售300个篮球所获得的利润是____________元;这种篮球每月的销售量是___________________个。(用含x的代数式表示)
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?
某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元。从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
(1)计算:+(2π-1)0-
sin45°-
tan30°
(2)解方程:
(3)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4,小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球。
① 请你列出所有可能的结果;
② 求两次取得乒乓球的数字之积为奇数的概率。