如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.
(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当△ECA为直角三角形时,求t的值.
九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的1.5倍,求慢车的速度.
已知:如图,在△ABC中,∠ACB=90°点D是AB的中点,延长BC到点F,延长CB到点E,使CF=BE,联结DE、DC、DF求证:DE=DF.
解不等式,并把它的解集在数轴上表示出来.
计算:.
如图,在平面直角坐标系中,直线分别交
轴,
轴于
两点,以
为边作矩形
,
为
的中点.以
,
为斜边端点作等腰直角三角形
,点
在第一象限,设矩形
与
重叠部分的面积为
.
求点
的坐标;
当
值由小到大变化时,求
与
的函数关系式;
若在直线
上存在点
,使
等于
,请直接写出
的取值范围
在
值的变化过程中,若
为等腰三角形,且PC=PD,请直接写出
的值.