游客
题文

如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.

(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当△ECA为直角三角形时,求t的值.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的1.5倍,求慢车的速度.

已知:如图,在△ABC中,∠ACB=90°点D是AB的中点,延长BC到点F,延长CB到点E,使CF=BE,联结DE、DC、DF求证:DE=DF.

解不等式,并把它的解集在数轴上表示出来.

计算:

如图,在平面直角坐标系中,直线分别交轴,轴于两点,以为边作矩形的中点.以为斜边端点作等腰直角三角形,点在第一象限,设矩形重叠部分的面积为

求点的坐标;
值由小到大变化时,求的函数关系式;
若在直线上存在点,使等于,请直接写出的取值范围
值的变化过程中,若为等腰三角形,且PC=PD,请直接写出的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号