已知.
(1)当时,求
的最大值;
(2)求证:恒成立;
(3)求证:.(参考数据:
)
已知椭圆C的两个焦点是)和
,并且经过点
,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F.
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1、l2,l1交抛物线E于点A、B,l2交抛物线E于点G、H,求的最小值.
设函数,数列
满足
(1)求数列的通项公式;
(2)对,设
,若
恒成立,求实数
的取值范围.
在四棱锥中,侧面
底面
,
,底面
是直角梯形,
,
,
,
.
(1)求证:平面
;
(2)设为侧棱
上一点,
,试确定
的值,使得二面角
为
.
为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
|
应该取消 |
应该保留 |
无所谓 |
||
在校学生 |
2100人 |
120人 |
y人 |
||
社会人士 |
600人 |
x人 |
z人 |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.