函数部分图象如图所示,其图象与
轴的交点为
,它在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
(Ⅰ)求的解析式及
的值;
(Ⅱ)在中,
、
、
分别是角
、
、
的对边,若
,
的面积为
,求
、
的值.
已知点,
是平面内一动点,直线
、
斜率之积为
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点作直线
与轨迹
交于
两点,线段
的中点为
,求直线
的斜率
的取值范围.
如图1,在直角梯形中,
,
,
,
为线段
的中点.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(Ⅰ) 求证:平面
;
(Ⅱ) 求二面角的余弦值.
某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定
正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.
(I)求该选手在复赛阶段被淘汰的概率;
(II)设该选手在竞赛中回答问题的个数为,求
的分布列、数学期望和方差.
设集合.
(Ⅰ)求;
(Ⅱ)若,求
的取值范围.
在中,
为锐角,角
所对的边分别为
,且
,
.
(Ⅰ)求的值;
(Ⅱ)若,求
的值.