规定,其中
,
为正整数,且
,这是排列数
(
是正整数,且
)的一种推广.
(1)求的值;
(2)排列数的两个性质:①,②
(其中
是正整数).是否都能推广到
(
,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(3)确定函数的单调区间.
△ABC中,a,b,c分别是角A,B,C的对边,,且
,
(Ⅰ)求△ABC的面积;(Ⅱ)若a=7,求角∠C
已知函数,
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根
,请求出一个长度为
的区间
,使
;如果没有,请说明理由?(注:区间
的长度
).
已知两直线,求分别满足下列条件的
、
的值.
(1)直线过点
,并且直线
与直线
垂直;
(2)直线与直线
平行,并且坐标原点到
、
的距离相等.
已知甲、乙两个工厂在今年的1月份的利润都是6万元,且甲厂在2月份的利润是14万元,乙厂在2月份的利润是8万元。若甲、乙两个工厂的利润(万元)与月份之间的函数关系式分别符合下列函数模型:
,
,
.
(1)求甲、乙两个工厂今年5月份的利润;
(2)在同一直角坐标系下画出函数与
的草图,并根据草图比较今年甲、乙两个工厂的利润的大小情况.
已知中
,
面
,
,求证:
面
.