图示为某种透明介质的截面图,△AOC为等腰直角三角形,BC为半径R=10cm的四分之一圆弧,AB与水平屏幕MN垂直并接触于A点。由红光和紫光两种单色光组成的细束复色光射向圆心O,在AB分界面上的入射角i=45°,结果在水平屏幕MN上出现两个亮斑,左右亮斑分别为P1、P2。假设该介质对红光和紫光的折射率分别为n1=
,n2=
。
(1)判断P1、P2两处产生亮斑的颜色;
(2)求两个亮斑间的距离P1P2。
一小球在距地面高35米的高处以30 m/s 的速度竖直向上抛出。(g=10 m/s2)求(1)小球到达最高点时离地面的高度
(2)小球离地面的高度为60米时,小球运动的时间
(3)小球落回到地面时速度的大小和方向
宇航员在一行星上以10 m/s的初速度竖直上抛一质量为0.2 kg的物体,不计阻力,经2.5 s后落回手中,已知该星球半径为7 220 km.
(1)该星球表面的重力加速度是多大?
(2)要使物体沿水平方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?
长度为L=0.4m,一端固定一小球,另一端固定在转动轴o上,小球绕轴在竖直平面内转动.杆的质量忽略不计,小球的质量为0.5 kg。(g=10 m/s2)求
(1)若小球经过最低点的速度为6 m/s ,此时杆对小球的弹力的大小。
(2)若小球经过最高点时,杆对小球的弹力为0,求此时小球的速度大小。
如图所示,从倾角为θ=300斜面上以9.8m/s的水平速度v0抛出的物体,飞行一段时间后撞在斜面上,求物体完成这段飞行的时间。
如图所示,在光滑的水平地面上,静止着质量为M =2.0kg的小车A,小车的上表面距离地面的高度为0.8m,小车A的左端叠放着一个质量为m=1.0kg的小物块B(可视为质点)处于静止状态,小物块与小车上表面之间的动摩擦因数μ=0.20。在小车A的左端正上方,用长为R=1.6m的不可伸长的轻绳将质量为m =1.0kg的小球C悬于固定点O点。现将小球C拉至使轻绳拉直且与竖起方向成θ=60°角的位置由静止释放,到达O点的正下方时,小球C与B发生弹性正碰(碰撞中无机械能损失),小物块从小车右端离开时车的速度为1m/s,空气阻力不计,取g=10m/s2. 求:
(1)小车上表面的长度L是多少?
(2)小物块落地时距小车右端的水平距离是多少?