下图是一个按照某种规律排列出来的三角形数阵
假设第行的第二个数为
(1)依次写出第七行的所有7个数字(不必说明理由);
(2)写出与
的递推关系(不必证明),并求出
的通项公式
.
如果的展开式中,第四项和第七项的二项式系数相等,求:
(1)展开式的中间项;
(2)展开式中所有的有理项.
圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1、圆O2交点的直线的直角坐标方程.
在极坐标系中,已知曲线C1:ρ=12sinθ,曲线C2:ρ=12cos.
(1)求曲线C1和C2的直角坐标方程;
(2)若P、Q分别是曲线C1和C2上的动点,求PQ的最大值.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为,直线的极坐标方程为ρcos
=a,且点A在直线上.
(1)求a的值及直线的直角坐标方程;
(2)圆C的参数方程为,(α为参数),试判断直线与圆的位置关系.
在极坐标系中,求点到直线ρsinθ=2的距离.