已知二次函数.
(1)若,试判断函数
零点个数;
(2)是否存在,使
同时满足以下条件
①对任意,且
;
②对任意,都有
。若存在,求出
的值,若不存在,请说明理由。
(3)若对任意且
,
,试证明存在
,
使成立。
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y=x2的焦点,离心率等于
.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若=λ1
,
=λ2
,求证λ1+λ2为定值.
试求三直线ax+y+1=0,x+ay+1=0,x+y+a=0构成三角形的条件.
某房地产公司要在荒地ABCDE(如下图)上划出一块长方形地面(不改变方位)进行开发.问如何设计才能使开发面积最大?并求出最大面积.(已知BC="210" m,CD="240" m,DE="300" m,EA="180" m)
m为任意实数时,直线(m-1)x+(2m-1)y=m-5必过定点.
直线l过点P(-2,3),且与x轴、y轴分别交于A、B两点,若点P恰为AB的中点,求直线l的方程.