解不等式组: .
计算: .
如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 , 的半径为 , 为 上一动点.
(1)点 , 的坐标分别为 , ;
(2)是否存在点 ,使得 为直角三角形?若存在,求出点 的坐标;若不存在,请说明理由;
(3)连接 ,若 为 的中点,连接 ,则 的最大值 .
如图,将边长为6的正三角形纸片 按如下顺序进行两次折叠,展平后,得折痕 、 (如图①),点 为其交点.
(1)探求 与 的数量关系,并说明理由;
(2)如图②,若 , 分别为 , 上的动点.
①当 的长度取得最小值时,求 的长度;
②如图③,若点 在线段 上, ,则 的最小值 .
如图①,菱形 中, ,动点 从点 出发,沿折线 运动到点 停止,动点 从点 出发,沿线段 运动到点 停止,它们运动的速度相同,设点 出发 时, 的面积为 .已知 与 之间的函数关系如图②所示,其中 、 为线段,曲线 为抛物线的一部分.请根据图中的信息,解答下列问题:
(1)当 时, 的面积 (填“变”或“不变” ;
(2)分别求出线段 ,曲线 所对应的函数表达式;
(3)当 为何值时, 的面积是 ?