用数学归纳法证明:(n+1)+ (n+2)+…+(n+n)=(n∈N*)的第二步中,当n=k+1时等式左边与n=k时的等式左边的差等于 .
用数学归纳法证明1++
+…+
<n(n∈N*,n>1)时,第一步应验证的不等式是 .
已知f(n)=1++
+…+
(n∈N*),用数学归纳法证明f(2n)>
时,f(2k+1)-f(2k)等于 .
若数列{an}的通项公式an=,记cn=2(1-a1)·(1-a2)…(1-an),试通过计算c1,c2,c3的值,推测cn= .
已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任意的m,n∈N*都有:
(1)f(m,n+1)=f(m,n)+2.
(2)f(m+1,1)=2f(m,1).
给出以下三个结论:①f(1,5)=9;②f(5,1)=16;
③f(5,6)=26.其中正确结论的序号有 .