游客
题文

石家庄市为鼓励居民节约用电,采用分段计费的方法计算电费,每月用电不超过100度时,按每度0.52元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.6元计算.
(1)设月用电度时,应缴电费元,写出关于的函数关系式;
(2)小明家第一季度缴纳电费情况如下:

月份
一月
二月
三月
合计
缴费金额




问小明家第一季度共用电多少度?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图1,在直角梯形中,,且
现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.

(1)求证:∥平面;
(2)求证:;
(3)求点到平面的距离.

某校高三(1)班共有名学生,他们每天自主学习的时间全部在分钟到分钟之间,按他们学习时间的长短分个组统计,得到如下频率分布表:

组别
分组
频数
频率
第一组



第二组



第三组



第四组



第五组



(1)求分布表中的值;
(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这名学生中抽取名进行研究,问应抽取多少名第一组的学生?
(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?

已知函数
(1)求的值;
(2)若,且,求.

函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.
(1)判断函数是否为“圆锥托底型”函数?并说明理由.
(2)若是“圆锥托底型” 函数,求出的最大值.
(3)问实数满足什么条件,是“圆锥托底型” 函数.

我们将不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点称为切点.解决下列问题:
已知抛物线上的点到焦点的距离等于4,直线与抛物线相交于不同的两点,且为定值).设线段的中点为,与直线平行的抛物线的切点为..

(1)求出抛物线方程,并写出焦点坐标、准线方程;
(2)用表示出点、点的坐标,并证明垂直于轴;
(3)求的面积,证明的面积与无关,只与有关.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号