石家庄市为鼓励居民节约用电,采用分段计费的方法计算电费,每月用电不超过100度时,按每度0.52元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.6元计算.
(1)设月用电度时,应缴电费
元,写出
关于
的函数关系式;
(2)小明家第一季度缴纳电费情况如下:
月份 |
一月 |
二月 |
三月 |
合计 |
缴费金额 |
![]() |
![]() |
![]() |
![]() |
问小明家第一季度共用电多少度?
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:1,2,3,4,5
编号n |
1 |
2 |
3 |
4 |
5 |
成绩xn |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
(注:方差s2=[(x1-
)2+(x2-
)2+…+(xn-
)2],其中
为x1,x2,…,xn的平均数)
已知函数
(Ⅰ)若试确定函数
的单调区间;
(Ⅱ)若,且对于任意
,
恒成立,求实数
的取值范围;
(Ⅲ)令若至少存在一个实数
,使
成立,求实数
的取值范围.
定义在上的函数
,当
时,
,且对任意的
,有
,
(Ⅰ)求证:;
(Ⅱ)求证:对任意的,恒有
;
(Ⅲ)证明:是
上的增函数.
已知函数,
.
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角
、
、
的对边分别为
、
、
,满足
,
且
,求
、
的值.
将一颗骰子先后抛掷2次,观察向上的点数,求:
(Ⅰ)两数之和为5的概率;
(Ⅱ)两数中至少有一个为奇数的概率.