(本题满分10分) 把两个三角形按如图1放置,其中∠ACB=∠DEC=90°,
∠CAB=45°,∠CDE=30°,且AB=12,DC=14,把△DCE绕点C顺时针旋转15°
得△D1CE1,如图2,这时AB与CD1相交于点O、与D1E1相交于点F;(1)求∠AC D1的度数;
(2)求线段AD1的长.
某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费y(元)与通讯时间x(分钟)之间的函数关系如图所示.(1)有月租费的收费方式是(填①或②),月租费是元;
(2)分别求出①、②两种收费方式中收费y(元)与通讯时间x(分钟)之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
如图,四边形ABCD为直角梯形,AD‖BC,
,
,
.
动点P、Q分别从A、C两点同时出发,点P以每秒1个单
位的速度由A向D运动,点Q以每秒2个单位的速度由C向B运动,当点Q停
止运动时,点P也停止运动,设运动时间为(0≤
≤5),
(1)当t为多少时,四边形PQCD是平行四边形?
(2)当t为多少时,四边形PQCD是等腰梯形?
(本题满分10分)某校举行演讲比赛,选出了10名同学担任评委,并事先拟定
从如下4个方案中选择合理的方案来确定每个演讲者的最后得分:
方案1:所有评委所给分的平均数;
方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余
给分的平均数;
方案3:所有评委所给分的中位数;
方案4:所有评委所给分的众数.
为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,
得分 |
3.2 |
7 |
7.8 |
8 |
8.4 |
9.8 |
评委人数 |
1人 |
1人 |
1人 |
3人 |
3人 |
1人 |
下面是这个同学的得分统计表:(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.
如图,在□ 中,E,F分别为边AB,CD的中点,连接DE,BF,BD.
(1)求证:△ADE≌△CBF.
(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.