已知矩形纸片ABCD中,AB=2,BC=3.
操作:将矩形纸片沿EF折叠,使点B落在边CD上.
探究:
(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;
(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;
(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.
先化简,再求值:
,其中.
计算: .
如图,抛物线
的顶点为,与
轴的正半轴交于点
.
(1)将抛物线上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;
(2)将抛物线上的点
变为
,
,变换后得到的抛物线记作
,抛物线
的顶点为
,点
在抛物线
上,满足
,且
.
①当时,求
的值;
②当时,请直接写出
的值,不必说明理由.
若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,中,设
,
,
,各边上的高分别记为
,
,
,各边上的内接正方形的边长分别记为
,
,
(1)模拟探究:如图,正方形为
的
边上的内接正方形,求证:
;
(2)特殊应用:若,
,求
的值;
(3)拓展延伸:若为锐角三角形,
,请判断
与
的大小,并说明理由.
如图,反比例函数
的图象与直线交于点
,
,其两边分别与两坐标轴的正半轴交于点
,
,四边形
的面积为6.
(1)求的值;
(2)点在反比例函数
的图象上,若点
的横坐标为3,
,其两边分别与
轴的正半轴,直线
交于点
,
,问是否存在点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由.