如图,方格纸中每个小方格都是边长为1个单位长度的正方形,已知点A(-1,1),现将A点先向左平移3个单位,再向下平移4个单位得到点B,然后作点B关于轴的对称点得到C点,最后做点C关于
轴的对称点得到D点。
在坐标系中作出点A、B、C、D。
顺次连接ABCDA,求四边形ABCD的面积。
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF.
(1)试判断直线BF与⊙O的位置关系,并说明理由;
(2)若AB=6,BF=8,求tan∠CBF.
如图,在一笔直的海岸线l上有A、B两个观测站,点A在点B的正东方向,AB=4km,有一艘小船在点P处,从点A 测得小船在北偏西60°方向,从点B测得小船在北偏东45°的方向.
(1)求小船到海岸线l的距离;
(2)小船从点P沿射线AP方向航行一段时间后,到C处,此时,从点B测得小船在北偏西15°的方向,求此时小船到观测点B的距离.(结果保留根号)
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
某体院要了解篮球专业学生投篮的命中率,对学生进行定点投篮测试,规定每人投篮20次,测试结束后随机抽查了一部分学生投中的次数,并分为五类,Ⅰ:投中11次;Ⅱ投中12次;Ⅲ:投中13次;Ⅳ:投中14次;Ⅴ:投中15次.根据调查结果绘制了下面尚不完整的统计图1、图2:
回答下列问题:
(1)本次抽查了 名学生,图2中的m= .
(2)补全条形统计图,并指出中位数在哪一类.
(3)求最高的命中率及命中最高的人数所占的百分比.
(4)若体院规定篮球专业学生定点投篮命中率不低于65%记作合格,估计该院篮球专业210名学生中约有多少人不合格.
先化简:÷(a-
),再选取一个你喜欢的数a代入求值.