游客
题文

刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE="4" cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).

(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐      
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,
求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

阅读下列材料:
小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.
小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE,则BE的长即为所求.

(1)请你写出图2中,PA+PB+PC的最小值为
(2)参考小华的思考问题的方法,解决下列问题:
①如图3,菱形ABCD中,∠ABC=60°,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.

如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

(1)求证:CD与⊙O相切;
(2)若⊙O的半径为1,求正方形ABCD的边长.

如图,抛物线y=ax2+2与y轴交于点A,抛物线上的一点P在第四象限,连接AP与x轴交于点C,=,且SAOC=1,过点P作PB⊥y轴于点B.

(1)求BP的长;
(2)求抛物线与x轴交点坐标.

如图,点E、A、B在同一直线上,AD∥BC,AB=AD,BC=AE.

(1)求证:△ABC∽△DAE;
(2)若∠CAD=90°,AD=BC,AE=1,求BD的长.

某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.

(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号