如图,已知二次函数的图象与
轴交于A、B两点,与
轴交于点P,顶点为C(1,-2).
(1)求此函数的关系式;
(2)作点C关于轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.
(本题8分)如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.
(1)求证:BE⊥AC;
(2)若∠A=50°,求∠FME的度数.
(本题8分)如图,△ABC中,∠A=60°.
(1)求作一点P,使得点P到B、C两点的距离相等,并且点P到AB、BC的距离也相等(尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,若∠ACP=15°,求∠ABP的度数.
(本题8分) 已知,如图, Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.
(1)图中还有哪几对全等三角形,请你一一列举(无需证明);
(2)求证:CF=EF.
(本题6分) 如图,在11×11的正方形网格中,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应) ;
(2)在直线l上找一点P,使得△PAC的周长最小.
(本题6分) 解方程
(1)4x2=121
(2)(x-1)3=125