如图,已知二次函数的图象与
轴交于A、B两点,与
轴交于点P,顶点为C(1,-2).
(1)求此函数的关系式;
(2)作点C关于轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.
如图,在边上为1个单位长度的小正方形网格中:
(1)画出△ABC向上平移6个单位长度,再向右平移 5个单位长度后的△A1B1C1.
(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.
(3)求△CC1C2的面积.
已知二次函数y=x2+2x-3.
(1)求此二次函数的图象与x轴的交点坐标;
(2)此二次函数的图象经怎样平移,使顶点变为A(3,0),请你描述平移的过程.
如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.
(1)求弧BE所对的圆心角的度数.
(2)求图中阴影部分的面积(结果保留π)
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4
,求AE的长.
如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);
(2)求摸出的两张牌同为红色的概率.