游客
题文

已知椭圆的离心率等于,点在椭圆上.
(I)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为,,过点的动直线与椭圆相交于,两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由。

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知函数f(x)=2sin(0≤x≤5),点AB分别是函数yf(x)图象上的最高点和最低点.
(1)求点AB的坐标以及·的值;
(2)设点AB分别在角αβ的终边上,求tan(α-2β)的值.

已知函数f(x)=sin-2cos2x∈R(其中ω>0).
(1)求函数f(x)的值域;
(2)若函数yf(x)的图象与直线y=-1的两个相邻交点间的距离为,求函数yf(x)的单调增区间.

已知△ABC的内角为ABC,其对边分别为abcB为锐角,向量m=(2sin B,-),n,且mn
(1)求角B的大小;
(2)如果b=2,求SABC的最大值.

已知函数f(x)=2sin x(sin x+cos x).
(1)求函数f(x)的最小正周期和最大值;
(2)在给出的平面直角坐标系中,画出函数yf(x)在区间上的图象.

已知函数f(x)=ax2-ln xx∈(0,e],其中e是自然对数的底数,a∈R.
(1)当a=1时,求函数f(x)的单调区间与极值;
(2)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号