甲、乙两个盒子中各有3个球,其中甲盒中有2个黑球1个白球,乙盒中有1个黑球2个白球,所有球之间只有颜色区别.
(Ⅰ)若从甲、乙两个盒子中各取一个球,求取出的2个球颜色相同的概率;
(Ⅱ)将这两个盒子中的球混合在一起,从中任取2个,求取出的2个球中至少有一个黑球的概率.
记数列{}的前n项和为为
,且
+
+n=0(n∈N*)恒成立.
(1)求证:数列是等比数列;
(2)已知2是函数f(x)=+ax-1的零点,若关于x的不等式f(x)≥
对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.
各项均为正数的数列{}中,a1=1,
是数列{
}的前n项和,对任意n∈N﹡,有2
=2p
+p
-p(p∈R).
(1)求常数p的值;
(2)求数列{}的前n项和
.
已知函数f(x)=2sin(ωx+)(ω>0,0<
<π)的图象如图所示.
(1)求函数f(x)的解析式:
(2)已知=
,且a∈(0,
),求f(a)的值.
已知a,b,c分别为△ABC的三个内角A,B,C的对边,=(sinA,1),
=(cosA,
),且
∥
.
(1)求角A的大小;
(2)若a=2,b=2,求△ABC的面积.
设全集U=R,A={y|y=},B={x|y=ln(1-2x)}.
(1)求A∩(CUB);
(2)记命题p:x∈A,命题q:x∈B,求满足“p∧q”为假的x的取值范围.