在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
分组 |
频数 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
(1)列出频率分布表,并画出频率分布直方图;
(2)估计纤度落在中的概率及纤度小于
的概率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.
设函数.
(1)求的最大值,并写出使
取最大值时
的集合;
(2)已知中,角
的对边分别为
,若
,
,求
的最小值.
已知函数的最大值为3,函数
的图象上相邻两对称轴间的距离为
,且
.
(1)求函数的解析式;
(2)将的图象向左平移
个单位,再向下平移1个单位后得到函数
的图象,试判断
的奇偶性,并求出
在R上的单调递增区间.
已知数列的前
项和为
.
(1)求数列的通项公式;
(2)求数列的前
项和
的取值范围.
已知等比数列中
,数列
满足
.
(1)求数列和
的通项公式;
(2)设,求数列
的前
项和
.
平面直角坐标系中,直线
的参数方程
(
为参数),圆
的方程为
,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求直线和圆
的极坐标方程;
(2)求直线和圆
的交点的极坐标(要求极角
).