如图,防洪大堤的横断面是梯形,背水坡AB的坡度i=1:,且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求小明到电线杆的距离和髙压电线杆CD的髙度(结果保留根号).
在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.
如图,正方形ABCD中,E与F分别是AD、BC上一点,在①AE=CF、②BE∥DF、③∠1=∠2中,请选择其中一个条件,证明BE=DF.
若关于x的一元二次方程x2+4x+2k=0有两个实数根,求k的取值范围及k的非负整数值.
解方程:(1)x2+4x+1="0" (2)(x﹣1)2+2x(x﹣1)=0.