游客
题文

如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.

(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<
①当t=1时,△ADF与△DEF是否相似?请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在 ABC 中, BAC = 90 ° , AB = AC , E , F 分别是 BC 上两点,若 EAF = 45 ° ,试判断 BE , CF , EF 之间的数量关系,并说明理由.

如图,点 P 是等边三角形 ABC 内的一点,连接 PA , PB , PC ,以 BP 为边作 PBQ = 60 ,且 BQ = BP ,连接 CQ .

1)观察并猜想 AP CQ 之间的大小关系,并证明你的结论;

2)若 PA : PB : PC = 3 : 4 : 5 ,连接 PQ ,试判断 PQC 的形状,并说明理由.

已知 ABC 为等腰直角三角形, AB = AC , D 为斜边 BC 的中点, E , F 分别是 AB , AC 边上的点,且 DE DF . BE = 12 , CF = 5 . DEF 的面积.

如图,在四边形 ABCD 中, ABC = 30 ° , ADC = 60 ° , AD = DC .证明: B D 2 = A B 2 + B C 2 .

如图,在 Rt ABC 中, ACB = 90 , CD AB D ,设 AC = b , BC = a AB = c , CD = h .

求证:(1 1 a 2 + 1 b 2 = 1 h 2

2 a + b < c + h

3)以 a + b , h , c + h 为边的三角形是直角三角形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号