如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(
,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)
①当t=1时,△ADF与△DEF是否相似?请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)
已知矩形 中, .点 是 边上一动点,连接 ,以 为直径作 ,交 于点 ,过点 作于 于点 .
(1)当直线 与 相切时,求 的长;
(2)当 时,求 的长;
(3)若线段 交 于点 ,在点 运动过程中, 能否成为等腰直角三角形?如果能,求出此时 的长,如果不能,说明理由.
如图,已知矩形 与 三边都相切,与 交于点 .已知点 分别从 三点同时出发,沿矩形 的边逆时针方向匀速运动,点 的运动速度分别是 ,当点 到达点 时停止运动, 两点同时停止运动.设运动时间为 (单位: ).
(1)求证: ;
(2)设 ,当 与 相似时,求出 的值;
(3)设 关于直线 对称的图形是 ,当 和 分别为何值时,点 与圆心 恰好重合,求出符合条件的 的值.
如图,已知抛物线 与 轴相交于 两点,与 轴的正半轴相交于 点,过 三点的 与 轴相切于点 .
(1)请求出点 坐标和 的半径;
(2)请确定抛物线的解析式;
(3) 为 轴负半轴上的一个动点,直线 交 于点 .若 与以 为顶点的三角形相似,求 的值(先画出符合题意的示意图再求解).
如图,锐角 中, 的对边分别是 ,已知二次函数 的图象顶点与点 关于 轴对称.延长 至 点,使 ,且以 为圆心, 为半径的圆与以 为圆心 为半径的圆相外切.
(1)求 的度数;
(2)设 ,求 的值;
(3)若关于 的方程 的两个根 满足 ,求 的面积.
如图,已知直线 ,与 轴交于点 ,与 轴交于点 ,以 为直径的 交 于另一点 ,把弧 沿直线 翻转后与 交于点 .
(1)当 时,求 的长;
(2)是否存在实数 ,使沿直线 把弧 翻转后所得的弧与 相切?若存在,请求出此时 的值;若不存在,请说明理由.