如图所示,水平放置的圆盘半径为R=1m,在其边缘C点固定一个高度不计的小桶,在圆盘直径CD的正上方放置一条水平滑道AB,滑道与CD平行.滑道右端B与圆盘圆心O在同一竖直线上,其高度差为h=1.25m.在滑道左端静止放置质量为m=0.4kg的物块(可视为质点),物体与滑道间的动摩擦因数为μ=0.2.当用一大小为F=4N的水平向右拉力拉动物块的同时,圆盘从图示位置以角速度ω=2πrad/s,绕穿过圆心O的竖直轴匀速转动,拉力作用一段时间后撤掉,物块在滑道上继续滑行,由B点水平抛出,恰好落入小桶内,重力加速度取10m/s2.
(1)求拉力作用的最短时间;
(2)若拉力作用时间为0.5s,求所需滑道的长度.
小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳恰好断掉,球飞行水平距离d后落地。如图所示。已知握绳的手离地面高度为d,手与球之间的绳长为d,重力加速度为g。忽略手的运动半径和空气阻力,绳能承受的最大拉力为定值。
(1)求绳断开时小球的速度;
(2)求绳能承受的最大拉力多大;
(3)若手的位置始终不变,改变绳长使手与球间的绳长变为,要使绳仍在球运动到最低点时恰好断掉,求小球飞行的水平距离。
如图,将一根光滑的细金属棒折成V形,顶角为2,其对称轴竖直,在其中一边套上一个质量为m的小金属环P,
(1)若固定V形细金属棒,小金属环P从距离顶点O为 x的A点处由静止自由滑下,则小金属环由静止下滑至顶点O点时需多少时间?
(2)若小金属环P随V形细金属棒绕其对称轴以角速度匀速转动时,小金属环与棒保持相对静止,则小金属环离对称轴的距离为多少?
如图, 上下两个转盘可绕穿过它们中心的竖直轴水平转动,且两盘角速度相同, 其中上盘的半径为d。一根不计重力的轻绳两端分别系有A、B两物体,质量分别为2m和m。将轻绳跨过固定在上转盘边缘的光滑挂钩,挂钩与B物体间的一段绳子长为L。当两个转盘以角速度ω匀速转动时,两段轻绳与转轴在同一竖直平面内,一段轻绳与竖直方向的夹角为θ,另一段轻绳始终沿竖直方向。(g=10m/s²,sin53°= ,cos53°=
)
(1)求转盘转动的角速度ω与夹角θ的关系?
(2)当转盘的角速度缓慢增加的过程中,夹角θ如何变化?A物体受到的摩擦力如何变化?试分析。
(3)已知B物体端的绳长L=4.5m,上盘半径d=0.4m。当角速度增加到某一数值时,B物体端的轻绳与竖直方向的夹角为53°,此时A物体恰好开始滑动,求A物体与下盘之间的动摩擦因数µ?(最大静摩擦力等于滑动摩擦力)
如图所示,在斜面的顶端有甲、乙两个物体,甲以初速度v0水平射出,同时乙以初速度v1= 9m/s沿倾角为53°的光滑斜面滑下。若斜面足够长,某一时刻甲、乙在斜面上的某一位置相遇,求 v0的大小?(g=10m/s²,sin53°= ,cos53°=
)
如图所示,两个星球A、B组成双星系统,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。已知A、B星球质量分别为mA、mB,万有引力常量为G。求(其中L为两星中心距离, T为两星的运动周期)