有一个装有进出水管的容器,单位时间内进水管与出水管的进出水量均一定,已知容器的容积为600升,图中线段OA与BC,分别表示单独打开一个进水管和单独打开一个出水管时,容器的存水量Q(升)随时间t变化的函数关系.
(1)求线段BC所表示的Q与t之间的函数关系式,并写出自变量t的取值范围;
(2)现已知容器内有水200升,先打开两个进水管和一个出水管一段时间,然后再关上一个进水管,直至把容器放满水,若总共用时不超过8分钟。请问,在这个过程中同时打开两个进水管和一个出水管的时间至少是多少分钟?
先化简,再求值:,其中
计算:
(1)(2)
如图,在直角坐标系中,Rt△OAB和Rt△OCD的直角顶点A,C始终在
轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变化时,Rt△OAB的面积恒为
.试解决下列问题:
(1)填空:点D坐标为 ;
(2)设点B横坐标为,请把BD长表示成关于
的函数关系式,并化简;
(3)等式BO=BD能否成立?为什么?
(4)设CM的延长线与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状(无需证明).
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线与
轴相交于点B,连结OA,抛物线
从点O沿OA方向平移,与直线
交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为,①用
的代数式表示点P的坐标;②当
为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在异于M的点Q,使△PQA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.
已知:关于的—次函数
=
和反比例函数
=
的图象都经过点(1,-2).求:
(1)—次函数和反比例函数的解析式;
(2)两个函数图象的另一个交点的坐标;
(3)请你直接写出不等式>
的解集.