设集合,函数
.
(1)若且
的最小值为1;求实数
的值
(2)若,且
,求
的取值范围.
已知常数、
、
都是实数,函数
的导函数为
(Ⅰ)设,求函数
的解析式;
(Ⅱ)如果方程的两个实数根分别为
、
,并且
问:是否存在正整数,使得
?请说明理由.
如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱
CD上的动点.
(I)试确定点F的位置,使得D1E⊥平面AB1F;
(II)当⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).
如图,多面体ABCDS中,面ABCD为矩形,
(I)求多面体ABCDS的体积;
(II)求AD与SB所成角的余弦值。
(III)求二面角A—SB—D的余弦值。
如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱
CD上的动点.
(I)试确定点F的位置,使得D1E⊥平面AB1F;
(II)当D1E⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).
在棱长为的正方体
中,
为棱
的中点.
(Ⅰ)求证:平面
; (Ⅱ)求
与平面
所成角的余弦值.