我校积极开展“阳光体育进校园”活动,坚持每天锻炼一小时,根据实际,决定主要开设A:篮球,B:乒乓球,C:跑步,D:跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下两张统计图.请你结合图中信息解答下列问题: (1)样本中最喜欢B乒乓球项目的人数百分比是,其所在扇形统计图中的圆心角的度数是度。(2)请把条形统计图补充完整.(3)已知我校新校区有学生1200人,请根据样本估计我校新校区最喜欢A篮球项目的人数是多少?
解方程组:
计算:||
.
如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1
(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;
(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;
(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)
如图所示,已知梯形ABCD中,AD∥BC,且AD<BC,N、M分别为AC、BD的中点,
求证:(1)MN∥BC;(2)MN= (BC-AD).