把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计)。
(1)如图1,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子。
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值及此时剪掉的正方形的边长;如果没有,请说明理由。
(2)如图2在正方形硬纸板上剪掉一些矩形(图2中阴影为剪去部分),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高。
掷一枚硬币,落地后,国徽朝上、朝下的概率各是多少?
将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,一面朝上,我们叫做“正”,另一面朝上,我们叫做“反”.
(1)一次实验中,硬币两次落地后可能出现几种情况:
(2)做20次实验,根据实验结果,填写下表.
结果 |
正正 |
正反 |
反反 |
频数 |
|||
频率 |
(3)根据上表,制作相应的频数分布直方图.
(4)经观察,哪种情况发生的频率较大.
(5)实验结果为“正反”的频率是多大.
(6)5个同学结成一组,分别汇总其中两人,三人,四人,五人的实验数据,得到40次,60次,80次,100次的实验结果,将相应数据填入下表。
实验次数 |
40次 |
60次 |
80次 |
100次 |
“正反”的频数 |
||||
“正反”的频率 |
(7)依上表,绘制相应的折线统计图.
(8)计算“正反”出现的概率.
(9)经过以上多次重复实验,所得结果为“正反”的频率与你计算的 “正反”的概率是否相近.
你还记得什么是频数、什么叫频率、什么叫概率吗?试举例说明.
已知直线y=-x+6和反比例函数y=(k≠0)
(1)k满足什么条件时,这两个函数在同一坐标系xOy中的图象有两个公共点?
(2)设(1)的两个公共点分别为A、B,∠AOB是锐角还是钝角?
某厂要制造能装250mL(1mL=1cm3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm的易拉罐用铝量是y cm3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y与x间的函数关系式.