在中,
,点P从点A开始沿AB边向点B以
的速度移动,点Q从点B沿BC向点C以
的速度移动.如果点P、Q分别从A、B同时出发.
(1)几秒后,的面积等于
;
(2)经过几秒后,PQ之间的距离为;
(3)在P、Q两点的运动过程中,可能是等腰三角形吗?请说明理由.
如图,在平面直角坐标系中,已知直线交
轴于点A,交
轴于点B,抛物线
经过点A和点(2,3),与
轴的另一交点为C.
求此二次函数的表达式
若点P是
轴下方的抛物线上一点,且△ACP的面积为10,求P点坐标;
若点D为抛物线上AB段上的一动点(点D不与A,B重合),过点D作DE⊥
轴交
轴于F,交线段AB于点E.是否存在点D,使得四边形BDEO为平行四边形?若存在,请求出满足条件的点D的坐标;若不存在,请通过计算说明理由.
如图(a)过反比例函数的图象在第一象限内的任意两点A、B作x轴的垂线,垂足分别为C、D,连接AO、BO和AB,AC和OB的交点为E,设△AOB与梯形ACDB的面积分别为S
与S
,
试比较S
与S
的大小;
如图(b),已知直线
与双曲线
交于M、N点,且点M的纵坐标为2.
①求m的值;
②若过原点的另一条直线l交双曲线于P、Q两点(P点在第一象限),若由M、N、P、Q为顶点组成的四边形面积为64,求P点的坐标。
已知二次函数的图象过点A(-3,0)和点B(1,0),且与
轴交于点C,D点在抛物线上且横坐标是 -2。
求抛物线的解析式;
抛物线的对称轴上有一动点P,求出PA+PD的最小值
点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E、G点坐标;如果不存在,请说明理由。
如图1,矩形的顶点
为原点,点
在
上,把
沿
折叠,使点
落在
边上的点
处,点
坐标分别为
和
,抛物线
过点
.
求
两点的坐标及该抛物线的解析式;
如图2,长、宽一定的矩形
的宽
,点
沿(1)中的抛物线滑动,在滑动过程中
轴,且
在
的下方,当
点横坐标为-1时,点
距离
轴
个单位,当矩形
在滑动过程中被
轴分成上下两部分的面积比为2:3时,求点
的坐标;
如图3,动点
同时从点
出发,点
以每秒3个单位长度的速度沿折线
按
的路线运动,点
以每秒8个单位长度的速度沿折线
按
的路线运动,当
两点相遇时,它们都停止运动.设
同时从点
出发
秒时,
的面积为
.①求出
与
的函数关系式,并写出
的取值范围:②设
是①中函数
的最大值,那么
=.
如图,直线分别交
轴、
轴于B、A两点,抛物线L:
的顶点G在
轴上,且过(0,4)和(4,4)两点.
求抛物线L的解析式;
抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由.
将抛物线L沿
轴平行移动得抛物线L
,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L
上. 试问这样的抛物线L
是否存在,若存在,求出L
对应的函数关系式,若不存在,说明理由.