已知数列中,当时,总有成立,且.(Ⅰ)证明:数列是等差数列,并求数列的通项公式;(Ⅱ)求数列的前项和.
中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点P. (1)求C的标准方程; (2)直线与C交于A、B两点,M为AB中点,且AB=2MP.请问直线是否经过某个定点,如果经过定点,求出点的坐标;如果不过定点,请说明理由.
已知. (1)求极值; (2)
平面坐标系中,A,B坐标为A(-3,0),B(3,0),点P(x,y)满足. (1)求点P的轨迹方程C; (2) 如果过A的一条直线与C交于M,N两点,且MN=6,求的方程
等差数列不是常数列,且,若构成等比数列. (1)求; (2)求数列前n项和
求函数. (1)求的周期与值域; (2)求在上的单调递减区间.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号