如图,已知椭圆过点
,离心率为
,左、右焦点分别为
、
.点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.设直线
、
的斜率分别为
、
.
(i)证明:;
(ii)问直线上是否存在点
,使得直线
、
、
、
的斜率
、
、
、
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
、已知命题p:方程a2x2+ax-2=0在[-1,1]上有解:命题q:只有一个
实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,求a的取值范围.
.已知数列满足
,
.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)求数列的通项公式和前
项和
.
设函数
(1)求函数的最小正周期和单调递增区间;
(2)当时,
的最大值为2,求
的值,并求出
的对称
轴方程.
将一颗质地均匀的正三棱锥骰子(4个面的点数分别为1,2,3,4)先
后抛掷两次,记第一次出现的点数为,第二次出现的点数为
(1)求事件“”的概率.
(2)求点(x,y)落在的区域内的概率。
(本小题满分10分)选修4-5:不等式选讲
关于的不等式
.(Ⅰ)当
时,解此不等式;
(Ⅱ)设函数,当
为何值时,
恒成立?