宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处。(取地球表面重力加速度g1=10m/s2,空气阻力不计, 该星球的半径与地球半径之比为R星∶R地=1∶4) 求:
(1)求该星球表面附近的重力加速度g2
(2)求该星球的质量与地球质量之比M星∶M地
(3)求该星球近地环绕速度与地球近地环绕速度比V星∶V地
如图所示,地面上放一木箱,质量为,用
的力与水平方向成
角斜向下推木箱,恰好使木箱匀速前进.若用此力与水平成
角向斜上方拉木箱,木箱的加速度多大?(取
,
,
)
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。上述m、q、l、t0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)
(1)求电压U的大小。
(2)求时进入两板间的带电粒子在磁场中做圆周运动的半径。
(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。
在xOy平面内有许多电子(质量为m、电量为e),从坐标O不断以相同速率v0沿不同方向射入第一象限,如图所示。现加一个垂直于xOy平面向内、磁感强度为B的匀强磁场,要求这些电子穿过磁场后都能平行于x轴向x轴正方向运动,求符合该条件磁场的最小面积。
一质量为m、带电量为q的粒子以速度v0从O点沿y轴正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从b处穿过x轴,速度方向与x轴正向夹角为30°,如图所示(粒子重力忽略不计)。试求:圆形磁场区的最小面积;
如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R。以O为圆心、R为半径的圆形区域内存在磁感应强度为B.方向垂直纸面向外的匀强磁场。D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板。质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场。粒子在s1处的速度和粒子所受的重力均不计。当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值。