一只船在静水中的速度为4m/s,它要以最短时间渡过一条40 m宽、水流速度为3 m/s的河.求:
(1)船过河的时间;
(2)船过河的位移大小.
如图所示, 金属导轨是由倾斜和水平两部分圆滑相接而成, 倾斜部分与水平夹角q =37°,导轨电阻不计。abcd矩形区域内有垂直导轨平面的匀强磁场,bc =" ad" =" s" =" 0.20" m。导轨上端搁有垂直于导轨的两根相同金属杆P1、P2,且P1位于ab与P2的中间位置,两杆电阻均为R,它们与导轨的动摩擦因数m =" 0.30," P1杆离水平轨道的高度h =" 0.60m," 现使杆P2不动,让P1杆静止起滑下,杆进入磁场时恰能做匀速运动,最后P1杆停在AA¢位置。
求:
(1)P1杆在水平轨道上滑动的距离x;
(2)P1杆停止后,再释放P2杆,为使P2杆进入磁场时也做匀速运动,事先要把磁场的磁感应强度大小调为原来的多少倍?
(3)若将磁感应强度B调为原来3倍,再释放P2,问P2杆是否有可能与P1杆不碰撞? 为什么?
如图所示,y轴右方向有方向垂直于纸面的匀强磁场,一个质量为m,电量为q的质子以速度v水平向右通过x轴上P点,最后从y轴上的M点射出磁场。已知M点到原点O的距离为H,质子射出磁场时速度方向与y轴负方向夹角θ=30°,
求:
(1)磁感应强度大小和方向;
(2)适当时候,在y轴右方再加一个匀强电场就可以使质子最终能沿y轴正方向做匀速直线运动,从质子经过P点开始计时,再经多长时间加这个匀强电场?电场强度的大小与方向如何?
如图为一装置的示意,小木桶abcd的质量为M =0.18kg,高L = 0.2m,其上沿ab离挡板E的竖直距离h = 0.8m,在小木桶内放有一质量m=0.02kg的小石块P(视为质点)。现通过细绳对小木桶施加一个竖直向上的恒力F,使小木桶由静止开始向上运动,小木桶的上沿ab与挡板E相碰后便立即停止运动,小石块P上升的最大高度恰好与ab相平。
求:
①拉力F的大小;
②小石块P由静止开始到最高点的过程中,小木桶abcd对它做的功。(取g = 10m/s2,空气阻力和定滑轮摩擦均忽略不计)。
如图所示,用两根长度都为l的细线悬挂一个小球A,两悬挂点等高,线与水平天花板间的夹角都是α,使球A在垂直于纸面的平面内做小幅度的摆动,当A经过平衡位置的瞬间,另一小球B从A球的正上方自由下落,若B球恰能击中A球,求B球开始下落时离A球振动平衡位置的高度。
如图所示,一小型发电站通过升压变压器B1和降压变压器B2把电能输送给用户(B1和B2都是理想变压器),已知发电机的输出功率为500kW,输出电压为500V,升压变压器B1原、副线圈的匝数比为1∶10,两变压器间输电导线的总电阻为2Ω。降压变压器B2的输出电压为220V。求:
(1)输电导线上损失的功率;
(2)降压变压器B2的原、副线圈的匝数比。