游客
题文

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,求的值;
(3)直线交椭圆两不同点,轴的射影分别为,若点满足,证明:点在椭圆上.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某校高一年级60名学生参加数学竞赛,成绩全部在40分至100分之间,现将成绩分成以下6段:,据此绘制了如图所示的频率分布直方图.

(1)求成绩在区间的频率;
(2)从成绩大于等于80分的学生中随机选3名学生,其中成绩在[90,100]内的学生人数为ξ,求ξ的分布列与均值.

已知
⑴ 求的最小正周期;
⑵设,求的值.

从数列中抽出一些项,依原来的顺序组成的新数列叫数列的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)设是无穷等比数列,首项,公比为.求证:当时,数列不存在
是无穷等差数列的子列.

如图,

已知椭圆E:的离心率为,过左焦点且斜率为的直线交
椭圆E于A,B两点,线段AB的中点为M,直线交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数,使得四边形AOBC为平行四边形?若存在求出的值,若不存在说明理
由.

已知曲线.
(1)求曲线在点()处的切线方程;
(2)若存在使得,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号