游客
题文

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,求的值;
(3)直线交椭圆两不同点,轴的射影分别为,若点满足,证明:点在椭圆上.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

教育部、国家体育总局和共青团中央号召全国各级各类学校要广泛,深入地开展全国亿万大中学生阳光体育运动,为此,某校学生会对2014-2015学年高二年级2014年9月与10月这两个月内参加体育运动的情况进行统计,随机抽取了100名学生作为样本,得到这100名学生在该月参加体育运动总时间的小时数,根据此数据作出了如下的频率分布表和 频率分布直方图:
(1)求的值,并补全频率分布直方图;
(2)根据上述数据和直方图,试估计运动时间在[25,55]小时的学生体育运动的平均时间;
频率分布表

分组
运动时间(小时)
频数
频率
1
[25,30)
20
0.2
2
[30,35)
a
p
3
[35,40)
20
0.2
4
[40,45)
15
0.15
5
[45,50)
10
0.10
6
[50,55]
5
0.05
合计

100
1.00

已知函数
(1)证明为偶函数;
(2)若不等式上恒成立,求实数的取值范围;
(3)当x∈(m>0,n>0)时,函数的值域为[2-3m,2-3n],求实数t的取值范围.

已知函数的定义域为
(1)判断函数的单调性,并用定义给出证明;
(2)若实数满足,求的取值范围.

为治疗一种慢性病,某医药研究所研究出一种新型药物,病人按规定的剂量服用该药物后,测得每毫升血液中含药量(毫克)与时间(小时)满足:前1小时内成正比例递增,1小时后按指数型函数为常数)衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.

(1)求函数的解析式;
(2)已知每毫升血液中含药量不低于0.5毫克时有治疗效果,低于0.5毫克时无治疗效果.求病人一次服药后的有效治疗时间为多少小时?

已知函数,且
(1)求实数的值;
(2)作出函数的图象并直接写出单调减区间.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号