游客
题文

如图所示,倾角为37°的光滑绝缘的斜面上放着M=1kg的U型导轨abcd,ab∥cd。另有一质量m=1kg的金属棒EF平行bc放在导轨上,EF下侧有绝缘的垂直于斜面的立柱P、S、Q挡住EF使之不下滑。以OO′为界,下部有一垂直于斜面向下的匀强磁场,上部有平行于斜面向下的匀强磁场。两磁场的磁感应强度均为B=1T,导轨bc段长L=1m。金属棒EF的电阻R=1.2Ω,其余电阻不计。金属棒与导轨间的动摩擦因数μ=0.4,开始时导轨bc边用细线系在立柱S上,导轨和斜面足够长。当剪断细线后,试求:

(1)细线剪短瞬间,导轨abcd运动的加速度;                                              
(2)导轨abcd运动的最大速度;
(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF的电量q=5C,则在此过程中,系统损失的机械能是多少?(sin37°=0.6)

科目 物理   题型 计算题   难度 较难
知识点: 电火花计时器、电磁打点计时器
登录免费查看答案和解析
相关试题

水上滑梯可简化成如图所示的模型:倾角为θ=37°斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7.0m,BC长d=2.0m,端点C距水面的高度h="1.0m." 一质量m=50kg的运动员从滑道起点A点无初速地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.10,(cos37°=0.8,sin37°=0.6,运动员在运动过程中可视为质点)求:

(1)运动员沿AB下滑时加速度的大小a;
(2)运动员从A滑到C的过程中克服摩擦力所做的功W和到达C点时速度的大小υ;
(3)保持水平滑道端点在同一竖直线上,调节水平滑道高度h和长度d到图中B′C′位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B′C′距水面的高度h′。

甲图为质谱仪的原理图.带正电粒子从静止开始经过电势差为U的电场加速后,从G点垂直于MN进入偏转磁场.该偏转磁场是一个以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B,带电粒子经偏转磁场后,最终到达照相底片上的H点.测得G、H间的距离为d,粒子的重力忽略不计.

(1)设粒子的电荷量为q,质量为m,试证明该粒子的比荷为:
(2)若偏转磁场的区域为圆形,且与MN相切于G点,如图乙所示,其它条件不变。要保证上述粒子从G点垂直于MN进入偏转磁场后不能打到MN边界上(MN足够长),求磁场区域的半径应满足的条件。

有三根长度皆为L="2.00" m的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的O点,另一端分别拴有质量皆为m=1.00×10-2 kg的带电小球A和B,它们的电量分别为+q和-q,q=1.00×10-7 C.A、B之间用第三根线连接起来.空间中存在大小为E=1.00×106 N/C的匀强电场,场强方向沿水平向右,平衡时A、B球的位置如图所示.现将O、B之间的线烧断,由于有空气阻力,A、B球最后会达到新的平衡位置.(忽略电荷间相互作用力)

(1)在细线OB烧断前,AB间细绳中的张力大小.
(2)当细绳OB烧断后并重新达到平衡后细绳AB中张力大小?
(3)在重新达到平衡的过程中系统克服空气阻力做了多少的功?

如图所示,在绝缘水平面上相距为L的A、B两点分别固定着等量正点电荷.O为AB连线的中点,C、D是AB连线上两点,其中AC=CO=OD=DB=1/4L.一质量为m电量为+q的小滑块(可视为质点)以初动能E从C点出发,沿直线AB向D运动,滑块第一次经过O点时的动能为kE(k>1),到达D点时动能恰好为零,小滑块最终停在O点,求:

(1)小滑块与水平面之间的动摩擦因数μ.
(2)OD两点间的电势差UOD.
(3)小滑块运动的总路程s.

宇航员在月球表面完成下面的实验:在一固定的竖直光滑圆轨道内部最低点静止一个质量为m的小球(可视为质点),如图所示.当给小球一瞬间的速度v时,刚好能使小球在竖直平面内做完整的圆周运动,已知圆弧的轨道半径为r,月球的半径为R1,引力常量为G.求:

(1)若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?
(2)轨道半径为2R1的环月卫星周期为多大?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号