从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,其中A1B2是从甲地到丙地的最短路线.一个人任意选了一条从甲地到丙地的路线,他恰好选到最短路线的概率是多少?
如图,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
已知抛物线经过点A (1,0), B(6,0).
(1)求抛物线的解析式;
(2)当y<0,直接写出自变量x的取值范围.
(3)抛物线与y轴交于点D, P是x轴上一点,且△PAD是以AD为腰的等腰三角形,试求P点坐标。
.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
如图,AC,BD是⊙O的两条直径.
(1)判断四边形ABCD的形状,并说明理由.
(2)若⊙O的直径为8,∠AOB=120°,求四边形ABCD的周长和面积.
已知某二次函数当时,函数有最大值-1,且函数图像与y轴交于(0,-4),
求该二次函数的解析式.