如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
(本题10分)如图,正方形网格中每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点的三角形叫做格点三角形.
(1)格点△ABC的面积为;
(2)画出格点△ABC绕点C逆时针旋转90°后的△A1B1C1,并求出在旋转过程中,点B所经过的路径长.
(本题10分)如图,已知AD是△ABC的高,AE是△ABC的外接圆的直径.
(1)求证AC·AB=AD·AE;
(2)若AB=8,AC=5,AD=4,求⊙O的面积.
(本题共10分) 已知关于的方程
,
(1)若=1是此方程的一根,求
的值及方程的另一根;
(2)试说明无论取什么实数值,此方程总有实数根.
(本题10分)
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
(本题8分)先化简,再求值:,其中m是方程
的根.