已知是
内任意一点,连结
并延长交对边于
,
,
,则
.这是平面几何的一个命题,其证明常常采用“面积法”:
.
运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明.
已知数列是公差不为0的等差数列,
,且
,
,
成等比数列.
(1)求数列{an}的通项公式;
(2)设,求数列
的前
项和
.
(1)设,求证:
(2)已知正数x、y满足2x+y=1,求的最小值及对应的x、y值.
(3)已知实数满足
,
的最大值及对应的x、y、z值.
(1)用数学归纳法证明等式1+2+3+…+(n+3)= .
(2)用数学归纳法证明不等式.
中日“钓鱼岛争端”问题越来越引起社会关注,我校对高一600名学生进行了一次“钓鱼岛”知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形
对应的纵轴数据;
(2)请你估算该年级的平均数及中位数.
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作四次试验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)已知零件个数与加工时间线性相关,求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?