如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。(1)求该抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式;(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数。
如图,已知:DF∥AC,∠C=∠D.求证:BD∥CE.
如图,EF⊥CD于F,GH⊥CD于H,已知∠1=70°,求∠3的度数.
如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2). (1)写出点A、B的坐标: (2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,). (3)△ABC的面积为 .
解不等式组:,并把它的解集在数轴上表示出来.
解方程组.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号