已知.(Ⅰ)时,求证在内是减函数;(Ⅱ)若在内有且只有一个极值点,求实数的取值范围.
已知:全集,函数的定义域为集合,集合 (1)求; (2)若,求实数的范围.
设函数 (1)证明 当,时,; (2)讨论在定义域内的零点个数,并证明你的结论.
已知函数,且. (1)求实数的值; (2)解不等式.
设函数. (Ⅰ)若时,求的单调区间; (Ⅱ)时,有极值,且对任意时,求的取值范围.
叙述并证明正弦定理.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号