正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图1中的正方形网格中△ABC是格点三角形,小正方形网格的边长为1(单位长度).
(1) △ABC的面积是 (平方单位);
(2)在图2所示的正方形网格中作出格点△A′B′C′和△A″B″C″,使△A′B′C′∽△ABC,△A″B″C″∽△ABC,且AB、A′B′、A″B″中任意两条线段的长度都不相等;
(3)在所有与△ABC相似的格点三角形中,是否存在面积为3(平方单位)的格点三角形?如果存在,请在图3中作出,如果不存在,请说明理由.
在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.
(1)当点D在边BC上时,如图①,求证:DE+DF=AC.
(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.
(3)若AC=6,DE=4,则DF= .
快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.
请结合图象信息解答下列问题:
(1)快、慢两车的速度各是多少?
(2)出发多少小时,快、慢两车距各自出发地的路程相等?
(3)直接写出在慢车到达甲地前,快、慢两车相距的路程为150千米的次数.
某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.
请根据所给信息解答下列问题:
(1)求本次抽取的学生人数.
(2)补全条形图,在扇形统计图中的横线上填上正确的数值,并直接写出“体育”对应的扇形圆心角的度数.
(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人?
矩形ABCD的对角线AC,BD相交于点O,AC=,BC=4,向矩形ABCD外作△CDE,使△CDE为等腰三角形,且点E在边BC所在的直线上,请你画出图形,直接写出OE的长,并画出体现解法的辅助线.
如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.