已知:A(a,y1)、B(2a,y2)是反比例函数图像上的两点.
(1)比较y1与y2的大小关系;
(2)若A、B两点在一次函数 第一象限的图像上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连结OA、OB,且S△OAB=8,求a的值;
(3)在(2)的条件下,如果,
,求使得m>n的x的取值范围.
如图,在△ABC中,AB=AC=8cm,∠BAC=120°.
(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);
(2)求它的外接圆半径.
如图,在直角坐标平面内,直线y=-x+5与轴和
轴分别交于A、B两点,二次函数y=
+bx+c的图象经过点A、B,且顶点为C.
(1)求这个二次函数的解析式;
(2)求sin∠OCA的值;
(3)若P是这个二次函数图象上位于x轴下方的一点,且ABP的面积为10,求点P的坐标.
如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,若∠PAB=40°,求∠P的度数.
居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A:非常赞同;B:赞同但要有时间限制;C:无所谓;D:不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)求本次被抽查的居民有多少人?
(2)将图1和图2补充完整;
(3)求图2中“C”层次所在扇形的圆心角的度数;
(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.