(本小题满分16分)
设数列的通项公式为
,数列
定义如下:对于正整数
,
是使得不等式
成立的所有
中的最小值.
(1)若,求
;
(2)若,求数列
的前
项和公式;
(3)是否存在和
,使得
?如果存在,求
和
的取值范围?如果不存在,请说明理由.
(本小题满分16分)
对于函数,如果它们的图象有公共点P,且在点P处的切线相同,则称函数
和
在点P处相切,称点P为这两个函数的切点.设函数
,
.
(1)当,
时,判断函数
和
是否相切?并说明理由;
(2)已知,
,且函数
和
相切,求切点P的坐标;
(3)设,点P的坐标为
,问是否存在符合条件的函数
和
,使得它们在点P处相切?若点P的坐标为
呢?(结论不要求证明)
(本小题满分16分)
如图(1),有一块形状为等腰直角三角形的薄板,腰AC的长为a米(a为常数),现在斜边AB上选一点D,将△ACD沿CD折起,翻扣在地面上,做成一个遮阳棚,如图(2). 设△BCD的面积为S,点A到直线CD的距离为d. 实践证明,遮阳效果y与S、d的乘积Sd成正比,比例系数为k(k为常数,且k>0).
(1)设∠ACD=,试将S表示为
的函数;
(2)当点D在何处时,遮阳效果最佳(即y取得最大值)?
(本小题满分14分)
在平面直角坐标系xoy中,椭圆C :的离心率为
,右焦点F(1,0),点P在椭圆C上,且在第一象限内,直线PQ与圆O:
相切于点M.
(1)求椭圆C的方程;
(2)求|PM|·|PF|的取值范围;
(3)若OP⊥OQ,求点Q的纵坐标t的值.
(本小题满分14分)
已知函数,点
分别是函数
图象上的最高点和最低点.
(1)求点的坐标以及
的值;
(2)设点分别在角
的终边上,求
的值.