设a为实数,函数,x
(1) 当a= 0时,求
的极大值、极小值;
(2) 若x>0时,,求a的取值范围;.
(3) 若函数在区间(0,1)上是减函数,求a的取值范围.
(1)求值:
(2)已知,求
的值
(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意
,①方程
有实数根;②函数
的导数
满足
.
(Ⅰ)判断函数是否是集合
中的元素,并说明理由;
(Ⅱ)集合中的元素
具有下面的性质:若
的定义域为
,则对于任意
,都存在
,使得等式
成立.试用这一性质证明:方程
有且只有一个实数根;
(本小题共13分)已知椭圆的右焦点为
,
为椭圆的上顶点,
为坐标原点,且△
是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点分别作直线
,
交椭圆于
,
两点,设两直线的斜率分别为
,
,且
,证明:直线
过定点(
).
(本小题共13分)已知函数.
(Ⅰ)若,求曲线
在点
处的切线方程;
(Ⅱ)若函数在区间
上单调递增,求实数
的取值范围.
(本小题共14分)如图,在四棱锥中,底面
是正方形,
平面
,
是
中点,
为线段
上一点.
(Ⅰ)求证:;
(Ⅱ)试确定点在线段
上的位置,使
//平面
,并说明理由.